Package 'PKPDsim'

Title: Tools for Performing Pharmacokinetic-Pharmacodynamic Simulations
Description: Simulate dose regimens for pharmacokinetic-pharmacodynamic (PK-PD) models described by differential equation (DE) systems. Simulation using ADVAN-style analytical equations is also supported (Abuhelwa et al. (2015) <doi:10.1016/j.vascn.2015.03.004>).
Authors: Ron Keizer [aut, cre], Jasmine Hughes [aut], Dominic Tong [aut], Kara Woo [aut], Jordan Brooks [aut], InsightRX [cph, fnd]
Maintainer: Ron Keizer <[email protected]>
License: MIT + file LICENSE
Version: 1.4.0
Built: 2025-01-19 06:49:37 UTC
Source: https://github.com/insightrx/pkpdsim

Help Index


Put vector values in quotes

Description

Put vector values in quotes

Usage

add_quotes(x, quote = "double")

Arguments

x

vector of string / numeric

quote

what type of quotes (double or single)

Value

Character vector of input with quotation marks around each value


Add residual variability to the dependent variable

Description

Add residual variability to the dependent variable

Usage

add_ruv(x, ruv = list(), obs_type = 1)

Arguments

x

dependent value without residual variability

ruv

list specifying proportional, additive and/or exponential errors (prop, add, exp)

obs_type

vector of observation types

Value

Input vector with residual variability added


Calculate the increase in a specific quantile for a distribution on y when residual variability is added

Description

Calculate the increase in a specific quantile for a distribution on y when residual variability is added

Usage

add_ruv_to_quantile(y, sd_y, log_scale = FALSE, q = NULL, ruv = list(), ...)

Arguments

y

y with

sd_y

standard deviation of y without residual variability added. Will add normally distributed variability (potentially on log-scale).

log_scale

add variability on log scale (FALSE by default, DEPRECATED!).

q

quantile

ruv

list of residual variability (prop and add)

...

passed arguments

Value

Numeric vector of y values with residual variability


Binomial adherence

Description

Model adherence as a binomial probability at the time of each occasion.

Usage

adherence_binomial(n = 100, prob)

Arguments

n

number of occasions

prob

binomial probability

Value

Returns a vector of length n containing values 0 (non-adherent) or 1 (adherent).

Numeric vector of length n


Markov adherence model

Description

Model adherence as a markov chain model, based on the probability of staying adherent and of becoming adherent once non-adherent. Assumes all patients start adherent.

Usage

adherence_markov(n = 100, p11 = 0.9, p01 = 0.7)

Arguments

n

number of occasions

p11

probability of staying adherent

p01

probability of going from non-adherent to adherent state

Value

Returns a vector of length n containing values 0 (non-adherent) or 1 (adherent).

Numeric vector of length n


ADVAN-style functions to calculate linear PK systems

Description

ADVAN-style functions to calculate linear PK systems

Usage

advan(model, cpp = TRUE)

Arguments

model

Standard linear PK model, e.g. ⁠1cmt_iv_bolus⁠.

cpp

use C++-versions of model (~50x faster than R implementations)

Value

Model function


Create ADVAN-style dataset

Description

Create ADVAN-style dataset

Usage

advan_create_data(
  regimen,
  parameters,
  cmts = 5,
  t_obs = NULL,
  covariates = NULL,
  covariate_model = NULL
)

Arguments

regimen

PKPDsim regimen

parameters

list of parameters

cmts

number of compartments, minimum is 1. Default is 5, which is enough for most linear PK models. It is OK to have more compartments available than are actually being used.

t_obs

add observation timepoints to dataset

covariates

covariate list

covariate_model

covariate model equations, written in C

Value

Data frame of ADVAN-style data


Internal function to parse the raw output from ADVAN-style functions

Description

Internal function to parse the raw output from ADVAN-style functions

Usage

advan_parse_output(data, cmts = 1, t_obs, extra_t_obs = TRUE, regimen)

Arguments

data

simulation output data

cmts

number of compartments

t_obs

observation times

extra_t_obs

leave extra added dose times in dataset?

regimen

PKPDsim regimen

Value

Data frame containing parsed simulation data


Add column RATEALL to ADVAN-style dataset to handle infusions

Description

Function adapted from code from Abuhelwa, Foster, Upton JPET 2015. cleaned up and somewhat optimized. Can potentially be optimized more.

Usage

advan_process_infusion_doses(data)

Arguments

data

ADVAN-style dataset, e.g. created using advan_create_data.

Value

Data frame containing additional RATEALL column.

References

Abuhelwa, A. Y., Foster, D. J. R., Upton, R. N. (2015) ADVAN-style analytical solutions for common pharmacokinetic models. J Pharmacol Toxicol Methods 73:42-8. DOI: 10.1016/j.vascn.2015.03.004


Apply infusion duration scale to a regimen

Description

E.g. see Centanni et al. Clin Pharmacokinet 2024. An estimated scaling factor for the length of the infusion was applied there in a model for vincristine. This is likely most relevant for very short infusions.

Usage

apply_duration_scale(
  regimen,
  duration_scale = NULL,
  parameters = NULL,
  cmt_mapping = NULL
)

Arguments

regimen

PKPDsim regimen

duration_scale

infusion length scale.

parameters

parameter list, required if the duration scale is specified as a parameter.

cmt_mapping

map of administration types to compartments, e.g. list("oral" = 1, "infusion" = 2, "bolus" = 2).

Details

Implementation is similar to handling of lagtime, i.e. the regimen that is the input for the simulation function is updated.

Value

Original regimen with infusion lengths scaled by a factor


Apply lagtime to a regimen

Description

Apply lagtime to a regimen

Usage

apply_lagtime(regimen, lagtime, parameters, cmt_mapping = NULL)

Arguments

regimen

PKPDsim regimen

lagtime

lagtime object, either single value / parameter name or vector of values/parameter names for all compartments.

parameters

parameter list, required if parameters are specified.

cmt_mapping

map of administration types to compartments, e.g. list("oral" = 1, "infusion" = 2, "bolus" = 2).

Value

Original regimen with lagtime added to dose times


See models from the literature available for installation

Description

See models from the literature available for installation

Usage

available_default_literature_models()

Value

Returns a character vector of models available for installation

Examples

available_default_literature_models()

Convenience function to calculate the AUC based on PK model parameters at any given moment, for linear iv models.

Description

Convenience function to calculate the AUC based on PK model parameters at any given moment, for linear iv models.

Usage

calc_auc_analytic(
  f = c("1cmt_iv_infusion", "2cmt_iv_infusion", "3cmt_iv_infusion", "1cmt_iv_bolus",
    "2cmt_iv_bolus", "3cmt_iv_bolus"),
  parameters,
  regimen = NULL,
  dose = NULL,
  interval = NULL,
  t_inf = NULL,
  t_obs = c(0, 24, 48, 72),
  ...
)

Arguments

f

analytic model to use, show available models using advan()

parameters

list of parameter estimates. Requires CL/V for 1-compartment models, CL/V/Q/V2 for 2-compartment models, and CL/V/Q/V2/Q2/V3 for 3-compartment models.

regimen

PKPDsim regimen created using new_regimen. Not required, regimen can also be specified using dose, interval, and t_inf.

dose

dosing amount for regimen (single value). Only used if no regimen supplied.

interval

dosing interval for regimen (single value). Only used if no . regimen supplied.

t_inf

infusion length for regimen (single value). Only used if no regimen supplied.

t_obs

vector of observation times for AUC

...

optional arguments passed to advanc_create_data()

Value

a data.frame with t and auc

Examples

dat <- calc_auc_analytic(
  f = "2cmt_iv_infusion",
  regimen = new_regimen(
    amt = 1000, n = 10, type = "infusion",
    t_inf = 1, interval = 24
  ),
  parameters = list(CL = 5, V = 50, Q = 8, V2 = 150)
)

Calculate derivative

Description

Calculate derivative

Usage

calc_dydP(dy, y, rel_delta, log_y)

Arguments

dy

dy

y

dependent value

rel_delta

relative delta

log_y

logical indicating if the dependent variable is log transformed


Returns the state of a linear PK system at steady state (trough) using analytics equations (so for linear PK systems only).

Description

Basically it performs a PK simulation using analytic equations instead of ODEs to steady state (n=45 days, increased if needed).

Usage

calc_ss_analytic(
  f = "1cmt_oral",
  dose,
  interval,
  t_inf = NULL,
  model,
  parameters,
  covariates = NULL,
  map = NULL,
  n_days = 45,
  n_transit_compartments = 0,
  auc = FALSE
)

Arguments

f

analytic equation to use, must be one of names(advan_funcs)

dose

dose

interval

interval

t_inf

infusion time

model

PKPDsim model

parameters

parameters list

covariates

covariates list

map

list for remapping parameters, ex: list(CL = "CL", V = "V")

n_days

number of days at which to assume steady state. Default is 45.

n_transit_compartments

number of transit compartments, will insert n compartments between the first (dose) compartment and the second (central) compartment.

auc

add (empty) AUC compartment at end of state vector?

Details

It can also be used for models with transit compartments, however, the assumption is made that at the end of the dosing interval the amount in the transit compartments is negligible (0).

Value

State vector of a linear pharmacokinetic system at steady state


Calculate model-specific variables using a dummy call to sim_ode()

Description

This is a convenience function for PKPDsim users, it is not used inside the ⁠sim_ode()`` function in any way. This function is useful for converting from an estimated parameter to actual parameter, e.g. when clearance is specified as ⁠CLi = CL * (WT/70) * (1/CR)⁠it can be used to calculate⁠CLi' without having to write that function a second time in R.

Usage

calculate_parameters(
  ode = NULL,
  parameters = NULL,
  covariates = NULL,
  include_parameters = TRUE,
  include_variables = TRUE,
  regimen = NULL,
  t_obs = NULL,
  ...
)

Arguments

ode

PKPDsim model object

parameters

parameter list

covariates

covariate list. Make sure to include covariates at the right time point, since only last observed covariate values are used.

include_parameters

boolean, include parameters?

include_variables

boolean, include variables?

regimen

optional, provide a regimen object for the computation of the effective parameters. This is only relevant for models for which parameters depend on the dose or administration type, which is rare.

t_obs

optional, provide timepoint(s) at which to computate effective parameters. This is only relevant for models with time-varying fixed-effects. If unspecified, will evaluate parameters at t=0.

...

arguments to pass on to simulation function

Value

List of model-specific variables


Checks obs input for valid combinations of cmt, var, scale

Description

Checks obs input for valid combinations of cmt, var, scale

Usage

check_obs_input(obs)

Arguments

obs

specified observation object including at least a description of which variable(s) are associated with a particular compartment, e.g. list(variable="CONC", scale="1").


Compile ODE model to c++ function

Description

Compile ODE model to c++ function

Usage

compile_sim_cpp(
  code,
  dose_code,
  pk_code,
  size,
  p,
  cpp_show_code,
  code_init = NULL,
  state_init = NULL,
  declare_variables = NULL,
  variables = NULL,
  covariates = NULL,
  obs = NULL,
  dose = NULL,
  iov = NULL,
  compile = TRUE,
  verbose = FALSE,
  as_is = FALSE
)

Arguments

code

C++ code ODE system

dose_code

C++ code per dose event

pk_code

C++ code per any event (similar to $PK)

size

size of ODE system

p

parameters (list)

cpp_show_code

show output c++ function?

code_init

code for initialization of state

state_init

state init vector

declare_variables

variable declaration for all required variables (including user-specified)

variables

only the user-specified variables

covariates

covariates specification

obs

observation specification

dose

dose specification

iov

iov specification

compile

compile or not?

verbose

show more output

as_is

use C-code as-is, don't substitute line-endings or shift indices

Value

List containing ODE definition in C++ code and simulation function


Use only last observed covariate values

Description

Use only last observed covariate values

Usage

covariate_last_obs_only(covariates)

Arguments

covariates

covariates object

Value

List containing same elements as input covariate object but including only the last value for each covariate


Convert covariate table specified as data.frame

Description

Can handle time-varying data too, if t or time is specified as column

Usage

covariates_table_to_list(covariates_table, covariates_implementation = list())

Arguments

covariates_table

⁠data.frame`` with covariates in columns. Potentially with ⁠idandt' columns

covariates_implementation

list with implementation method per covariate

Value

List of covariates


Create lower-diagonal omega matrix from CV for parameter estimates

Description

Create lower-diagonal omega matrix from CV for parameter estimates

Usage

cv_to_omega(par_cv = NULL, parameters = NULL)

Arguments

par_cv

list of parameter CVs

parameters

list of parameters

Value

a vector describing the lower triangle of the omega (between-subject variability) matrix

See Also

sim_ode


Auto-detect the syntax for the ODE code

Description

Either PKPDsim or RxODE

Usage

detect_ode_syntax(code)

Arguments

code

character string with ODE code

Value

List with elements from and to indicating the syntax for the ODE code


covariate function builder

Description

covariate function builder

Usage

f_cov(...)

Arguments

...

parameters to pass to cov

Value

Covariate function


Get fixed parameters from model definition.

Description

Get fixed parameters listed in model definition. This function is used when parsing model specifications before the model has been compiled. Please see ⁠[get_model_fixed_parameters]⁠ for accessing fixed parameters from a model that has already been built.

Usage

get_fixed_parameters(def)

Arguments

def

Model definition as output by read_model_json()


Functions for getting information about a model

Description

PKPDsim models encode information about using the model that can be helpful for working with the model. This family of functions provides an easier API for accessing useful information. See also attributes(model) for less commonly used model metadata. Functions will return NULL if the requested field is not available.

Usage

get_model_parameters(model)

get_model_covariates(model)

get_model_fixed_parameters(model)

get_model_structure(model)

get_model_linearity(model)

get_model_auc_compartment(model)

get_model_iov(model)

Arguments

model

PKPDsim model

Value

get_model_parameters: returns a vector of PK parameter names

get_model_covariates: returns a vector of covariate names

get_model_fixed_parameters: returns a vector of names of parameters that are not associated with inter-individual or inter-occasion variability.

get_model_structure: returns a single string indicating model structure. E.g.,: "1cmt_iv", "2cmt_oral".

get_model_linearity: returns a single string indicating model linearity. E.g., "linear" or "nonlinear".

get_model_auc_compartment: returns the index of the final compartment, which is conventionally the AUC compartment. Note: will not detect if the final compartment is actually encoded to describe AUC.

get_model_iov: returns information about the IOV structure. For models without IOV, returns a single field (list(n_bins = 1)). Models with IOV will return additional fields: n_bins, bin durations, and CV associated with each PK parameter.


Get the number of states in the ODE from the code code C++ code for model

Description

Get the number of states in the ODE from the code code C++ code for model

Usage

get_ode_model_size(code)

Arguments

code

C++ code

Value

Number of states in the ODE model


Get model parameters from code

Description

Get model parameters from code

Usage

get_parameters_from_code(code, state_init, declare_variables = NULL)

Arguments

code

code

state_init

state init vector

declare_variables

declared variables

Value

Vector of parameter names


Get expected variance/sd/ci of dependent variable based on PKPDsim model, parameters, and regimen

Description

Get expected variance/sd/ci of dependent variable based on PKPDsim model, parameters, and regimen

Usage

get_var_y(
  model = NULL,
  parameters = list(),
  regimen = list(),
  t_obs = c(1:48),
  obs_comp = NULL,
  obs_variable = NULL,
  omega = c(0.1, 0.05, 0.1),
  omega_full = NULL,
  n_ind = NULL,
  ruv = NULL,
  y = NULL,
  rel_delta = 1e-04,
  method = "delta",
  sequence = NULL,
  auc = FALSE,
  sd = TRUE,
  q = NULL,
  in_parallel = FALSE,
  n_cores = 3,
  return_all = FALSE,
  ...
)

Arguments

model

model, created using PKPDsim::new_ode_model()

parameters

parameters list

regimen

regimen, as created using PKPDsim::new_regimen()

t_obs

vector of observation times

obs_comp

observation compartment. If NULL will be "obs" (default)

obs_variable

observation variable. If NULL, will be ignored, otherwise will override obs_comp.

omega

triangle omega block

omega_full

full omega block

n_ind

number of individuals to simulate with sim method

ruv

residual variability, supplied as a named list, ex: list(prop = 0, add = 0, exp = 0)

y

vector of observations. If NULL, then a new simulation will be performed.

rel_delta

rel_delta

method

method, delta or sim

sequence

for simulations, if not NULL the pseudo-random sequence to use, e.g. "halton" or "sobol". See mvrnorm2 for more details.

auc

is AUC?

sd

return as standard deviation (TRUE) or variance (FALSE)

q

return vector of quantiles instead of sd/var. Will return parametric quantiles when delta-method is used, non-parametric for simulation-based methods.

in_parallel

run simulations in parallel?

n_cores

if run in parallel, on how many cores?

return_all

return object with all relevant information?

...

passed on to sim_ode()

Value

Vector of standard deviations or variances (or quantiles thereof) for dependent value variable


ifelse function but then based on whether value is NULL or not

Description

ifelse function but then based on whether value is NULL or not

Usage

ifelse0(value = NULL, alternative = NULL, allow_null = FALSE)

Arguments

value

metadata list object

alternative

alternative value

allow_null

can the alternative be NULL?

Value

value if non-NULL; alternative otherwise


Install default literature model

Description

A very lightweight wrapper for model_from_api that installs previously published models packaged within PKPDsim.

Usage

install_default_literature_model(model, ...)

Arguments

model

Name of model, e.g., "pk_busulfan_mccune". See available_default_literature_models()

...

arguments passed onto model_from_api. For fine-grain control, it is better to install models directly from model_from_api() or new_ode_model().

Examples

## Not run: 
install_default_literature_model("pk_busulfan_mccune")

## End(Not run)

Is matrix positive definite

Description

Is matrix positive definite

Usage

is_positive_definite(x)

Arguments

x

matrix, specified either as vector of lower triangle, or full matrix (as matrix class)

Value

TRUE if x is positive definite; FALSE otherwise.


Combines covariates and parameters into a single list, useful for reparametrization of the model.

Description

Combines covariates and parameters into a single list, useful for reparametrization of the model.

Usage

join_cov_and_par(covs, pars)

Arguments

covs

covariates object

pars

model parameters, such as the output of the parameters() call frmo a model library.

Value

List containing covariates and parameters


Join two dosing regimens

Description

Join two dosing regimens

Usage

join_regimen(
  regimen1 = NULL,
  regimen2 = NULL,
  interval = NULL,
  dose_update = NULL,
  t_dose_update = NULL,
  continuous = FALSE
)

Arguments

regimen1

first regimen

regimen2

second regimen

interval

interval between regimen1 and regimen2 (if dose_update not specified)

dose_update

dose number at which to override regimen1 with regimen 2 (if interval not specified)

t_dose_update

dose time from which to update regimen

continuous

for joining continuous infusions

Value

Joined regimen


Size of the lower triangle of the matrix

Description

Size of the lower triangle of the matrix

Usage

lower_triangle_mat_size(mat)

Arguments

mat

omega matrix as a vector


Merge two regimens together.

Description

In contrast to join_regimen, which joins two consecutive regimens together, merge_regimen merges two or more regimens given at the same time. This can e.g. be used to define regimens for multi-drug models.

Usage

merge_regimen(regimens)

Arguments

regimens

List of PKPDsim regimens created with new_regimen.

Value

Merged regimens


Load model definition from API, and compile to R library

Description

Load model definition from API, and compile to R library

Usage

model_from_api(
  url,
  model = NULL,
  nonmem = NULL,
  verbose = TRUE,
  get_definition = FALSE,
  to_package = FALSE,
  force = FALSE,
  install_all = FALSE,
  ...
)

Arguments

url

URL or file path to JSON representation of model

model

model id (used in messages)

nonmem

URL or file path to NONMEM file

verbose

verbosity (T/F)

get_definition

return only the model definition, do not compile

to_package

compile to package?

force

force install even if same version number of model already installed.

install_all

force install all, even if model inactive

...

arguments passed to new_ode_model() function

Value

Model object created with new_ode_model()


Model library

Description

Model library

Usage

model_library(name = NULL)

Arguments

name

name of model in library. If none specified, will show list of available models.

Value

List containing information about the named model


More powerful multivariate normal sampling function

Description

Besides standard multivariate normal sampling (mvrnorm), allows exponential multivariate normal and quasi-random multivariate normal (using the randtoolbox) all using the same interface.

Usage

mvrnorm2(n, mu, Sigma, exponential = FALSE, sequence = NULL, ...)

Arguments

n

number of samples

mu

mean

Sigma

covariance matrix

exponential

exponential distribution (i.e. multiply mu by exponential of sampled numbers)

sequence

any sequence available in the randtoolbox, e.g. halton, or sobol

...

parameters passed to mvrnorm or randtoolbox sequence generator

Value

Multivariate normal samples


Fill in NAs with the previous non-missing value

Description

Inspired by zoo::na.locf0

Usage

na_locf(object, fromLast = FALSE)

Arguments

object

an object

fromLast

logical. Causes observations to be carried backward rather than forward. Default is FALSE.

Value

Original object with NAs filled in


Probabilistically model adherence

Description

Model the drug adherence using either a binomial probability distribution or a markov chain model based on the probability of staying adherent and of becoming adherent once non-adherent.

Usage

new_adherence(
  n = 100,
  type = c("markov", "binomial"),
  p_markov_remain_ad = 0.75,
  p_markov_become_ad = 0.75,
  p_binom = 0.7
)

Arguments

n

number of occasions to simulate

type

type of adherence simulation, either "markov" or "binomial"

p_markov_remain_ad

markov probability of staying adherent

p_markov_become_ad

markov probability of going from non-adherent to adherent state

p_binom

binomial probability of being adherent

Value

Returns a vector of length n containing values 0 (non-adherent) or 1 (adherent).

Numeric vector of length n


New covariate

Description

Describe data for a covariate, either fixed or time-variant

Usage

new_covariate(
  value = NULL,
  times = NULL,
  implementation = c("interpolate", "locf"),
  unit = NULL,
  interpolation_join_limit = 1,
  remove_negative_times = TRUE,
  round_times = NULL,
  comments = NULL,
  verbose = TRUE
)

Arguments

value

a numeric vector

times

NULL for time-invariant covariate or a numeric vector specifying the update times for the covariate

implementation

for time-varying covariates either 'locf' (last observation carried forward) or 'interpolate' (default). Non-numeric covariate values are assumed to be locf.

unit

specify covariate unit (optional, for documentation purposes only)

interpolation_join_limit

for interpolate option, if covariate timepoints are spaced too close together, the ODE solver sometimes chokes. This argument sets a lower limit on the space between timepoints. It will create average values on joint timepoints instead. If undesired set to NULL or 0.

remove_negative_times

should times before zero be discarded (with value at time zero determined based on implementation argument), TRUE or FALSE.

round_times

round times to specified number of digits. If NULL, will not round.

comments

NULL, or vector of length equal to value specifying comments to each observation (optional, for documentation only)

verbose

verbosity

Value

Object of class "covariate"


covariate model function

Description

covariate model function

Usage

new_covariate_model(model = list())

Arguments

model

covariate model specified as list

Value

List containing model function(s)


Create new ODE model

Description

Create new ODE model

Usage

new_ode_model(
  model = NULL,
  code = NULL,
  pk_code = NULL,
  dose_code = NULL,
  file = NULL,
  func = NULL,
  state_init = NULL,
  parameters = NULL,
  reparametrization = NULL,
  mixture = NULL,
  units = NULL,
  size = NULL,
  lagtime = NULL,
  obs = list(cmt = 1, scale = 1),
  dose = list(cmt = 1),
  covariates = NULL,
  declare_variables = NULL,
  iiv = NULL,
  iov = NULL,
  development = NULL,
  omega_matrix = NULL,
  ruv = NULL,
  ltbs = NULL,
  misc = NULL,
  cmt_mapping = NULL,
  int_step_size = NULL,
  default_parameters = NULL,
  fixed = NULL,
  cpp_show_code = FALSE,
  package = NULL,
  test_file = NULL,
  install = TRUE,
  folder = NULL,
  lib_location = NULL,
  verbose = FALSE,
  as_is = FALSE,
  nonmem = NULL,
  comments = NULL,
  version = "0.1.0",
  quiet = "",
  definition = NULL
)

Arguments

model

model name from model library

code

C++ code specifying ODE system

pk_code

C++ code called at any event

dose_code

C++ code called at dose event only

file

file containing C++ code

func

R function to be used with deSolve library

state_init

vector of state init

parameters

list or vector of parameter values

reparametrization

list of parameters with definitions that reparametrize the linear PK model to a 1-, 2- o4 3-compartment PK with standardized parametrization.

mixture

for mixture models, provide a list of the parameter associated with the mixture and it's possible values and probabilities (of the first value), e.g. ⁠list(CL = list(value = c(10, 20), probability = 0.3)⁠.

units

list or vector of parameter units

size

size of state vector for model. Size will be extracted automatically from supplied code, use this argument to override.

lagtime

lag time

obs

list with "scale": character string with definition for scale, e.g. "V" or "V*(WT/70)". If NULL, scale defaults to 1., and "cmt" the observation compartment

dose

specify default dose compartment, e.g. list(cmt = 1)

covariates

specify covariates, either as a character vector or a list. if specified as list, it allows use of timevarying covariates (see new_covariate() function for more info)

declare_variables

declare variables

iiv

inter-individual variability, can optionally be added to library

iov

inter-occasion variability, can optionally be added to library

development

Information about the model development population, can optionally be added to library

omega_matrix

variance-covariance matrix for inter-individual variability, can optionally be added to library

ruv

residual variability, can optionally be added to library

ltbs

log-transform both sides. Not used in simulations, only for fitting (sets attribute ltbs).

misc

a list of miscellaneous model metadata

cmt_mapping

list indicating which administration routes apply to which compartments. Example: list("oral" = 1, "infusion" = 2)

int_step_size

step size for integrator. Can be pre-specified for model, to override default for sim_ode()

default_parameters

population or specific patient values, can optionally be added to library

fixed

parameters that should not have iiv added.

cpp_show_code

show generated C++ code

package

package name when saving as package

test_file

optional test file to be included with package

install

install package after compilation?

folder

base folder name to create package in

lib_location

install into folder (--library argument)

verbose

show more output

as_is

use C-code as-is, don't substitute line-endings or shift indices

nonmem

add NONMEM code as attribute to model object

comments

comments for model

version

number of library

quiet

passed on to system2 as setting for stderr and stdout; how to output cmd line output. Default ("") is R console, NULL or FALSE discards. TRUE captures the output and saves as a file.

definition

optional, filename for the JSON file the full definition for the model. The definition file will be stored as definition.json in the resulting package.

Value

If package name is NULL, returns the model object. Otherwise has no return value.


Dose regimen for sim_ode

Description

Create a dosing regimen for use with sim_ode

Usage

new_regimen(
  amt = 100,
  interval = NULL,
  n = 3,
  times = NULL,
  type = NULL,
  t_inf = NULL,
  rate = NULL,
  t_lag = NULL,
  cmt = NULL,
  checks = TRUE,
  ss = FALSE,
  n_ss = NULL,
  first_dose_time = now_utc()
)

Arguments

amt

dosing amount, either a single value (which will repeated for multiple doses), or a vector with doses for each administration

interval

dosing interval (requires n as argument)

n

number of doses (requires interval as argument)

times

vector describing dosing times. Overrides specified times using interval and n arguments

type

either "infusion", "bolus", "oral", "sc" (subcutaneous), or "im" (intramuscular).

t_inf

infusion time (if type==infusion)

rate

infusion rate (if type==infusion). NULL by default. If specified, overrides t_inf

t_lag

lag time (can be applied to any dose type, not only oral). Will just be added to times

cmt

vector of dosing compartments (optional, if NULL will dosing compartment defined in model will be used)

checks

input checks. Remove to increase speed (e.g. for population-level estimation or optimal design)

ss

steady state? boolean value whether to simulate out to steady state first (steady state will be based on specified amt and interval, times will be ignored).

n_ss

how many doses to simulate before assumed steady state. Default is 4 * 24 / interval.

first_dose_time

datetime stamp of first dose (of class POSIXct). Default is current date time.

Value

a list containing calculated VPC information, and a ggplot2 object

See Also

sim_ode

Examples

r1 <- new_regimen(amt=50, interval=12, n=20) # dose 50mg, q12hrs for 10 days
r2 <- new_regimen(amt=50, times=c(0:19)*12)  # same, but using explicit times
r3 <- new_regimen(amt=c(rep(100,4), rep(50,16)), times=c(0:19)*12)  # first 4 doses higher dose

Function to parse parameters for a model into a structure used by nlmixr

Description

Function to parse parameters for a model into a structure used by nlmixr

Usage

nlmixr_parse_parameters(
  parameters = list(CL = 5, V = 50),
  omega = c(0.1, 0.05, 0.1),
  res_var = list(prop = 0.1, add = 1),
  fixed = c(),
  log_transform = TRUE,
  ...
)

Arguments

parameters

list of parameters

omega

vector describing the lower-diagonal of the between-subject variability matrix

res_var

residual variability. Expected a list with arguments prop, add, and/or exp. NULL by default.

fixed

vector of fixed parameters

log_transform

log-transform estimated parameters in nlmixr?

...

passed on

Value

List of parameters that can be used by nlmixr


Create a regimen from NONMEM data

Description

Create a regimen based on a NONMEM, or NONMEM-like dataset

Usage

nm_to_regimen(data, reset_time = TRUE, first_only = FALSE)

Arguments

data

NONMEM-type dataset

reset_time

start time for each simulated patient at 0, irrespective of design in dataset

first_only

use only design from first individual in dataset

Value

Regimen object


PK dataset

Description

Example PK dataset

Usage

pkdata

Format

A data frame with 624 rows and 12 variables in NONMEM format


Convert a model generated with PKPDsim to an object for nlmixr

Description

Convert a model generated with PKPDsim to an object for nlmixr

Usage

pkpdsim_to_nlmixr(
  model = NULL,
  parameters = NULL,
  omega = NULL,
  res_var = NULL,
  fixed = c(),
  ini_code = NULL,
  model_code = NULL,
  model_par_code = NULL,
  verbose = FALSE,
  ...
)

Arguments

model

PKPDsim model

parameters

list of parameters

omega

vector describing the lower-diagonal of the between-subject variability matrix

res_var

residual variability. Expected a list with arguments prop, add, and/or exp. NULL by default.

fixed

vector of fixed (not estimated) parameter names

ini_code

manually specify the ini block for nlmixr

model_code

manually specify the model block for nlmixr

model_par_code

manually specify the parameters section inside the model block for nlmixr

verbose

verbose, TRUE or FALSE

...

passed on

Value

nlmixr function


Remove n doses (from tail) of PKPDsim regimen

Description

Opposite of shift_regimen()

Usage

pop_regimen(regimen, n = 1)

Arguments

regimen

PKPDsim regimen created using new_regimen()

n

number of doses to pop from regimen

Value

Input regiment minus selected number of doses

See Also

shift_regimen


Read model definition from JSON

Description

Does some substitution of escaped characters in strings in the JSON file, then converts to a list with jsonlite::fromJSON()

Usage

read_model_json(path)

Arguments

path

Path to JSON file

Value

List containing contents of original JSON file


Convert PKPDsim regimen to NONMEM table (doses only)

Description

Convert PKPDsim regimen to NONMEM table (doses only)

Usage

regimen_to_nm(
  reg = NULL,
  dose_cmt = 1,
  n_ind = 1,
  t_obs = NULL,
  obs_cmt = 1,
  bioav = NULL
)

Arguments

reg

PKPDsim regimen, created using new_regimen() function

dose_cmt

dosing compartment, if not specified in reg object

n_ind

repeat for n_ind subjects

t_obs

add observation time(s)

obs_cmt

observation compartment for added observation time(s)

bioav

bioavailability (numeric vector, can not be a parameter)

Value

Data frame containing doses


Reparametrize model parameters using a reparametrization defined within the model.

Description

Mostly useful for reparametrizing models into standard parametrizations, e.g. to NONMEM TRANS or clinPK parametrizations.

Usage

reparametrize(model, parameters, covariates)

Arguments

model

PKPDsim model, compiled using reparametrization argument or in metadata object.

parameters

list of model parameters

covariates

covariates list, specified as PKPDsim covariates

Value

Reparameterized model parameters


Find string and replace in file

Description

Find string and replace in file

Usage

search_replace_in_file(files = c(), find = NULL, replacement = NULL)

Arguments

files

vector of files

find

find what string, vector of character

replacement

replace with what, vector of character, should be equal in length to find

Value

Function does not return a value but edits files on disk


Remove n doses (from start) of PKPDsim regimen

Description

Opposite of pop_regimen()

Usage

shift_regimen(regimen, n = 1, reset_time = TRUE)

Arguments

regimen

PKPDsim regimen created using new_regimen()

n

number of doses to shift regimen

reset_time

reset the remaining doses to start at t=0?

Value

Regimen with selected number of doses removed from start

See Also

pop_regimen


Simulate ODE or analytical equation

Description

Simulates a specified regimen using ODE system or analytical equation

Usage

sim(
  ode = NULL,
  analytical = NULL,
  parameters = NULL,
  parameters_table = NULL,
  mixture_group = NULL,
  omega = NULL,
  omega_type = "exponential",
  res_var = NULL,
  iov_bins = NULL,
  seed = NULL,
  sequence = NULL,
  n_ind = 1,
  event_table = NULL,
  regimen = NULL,
  lagtime = NULL,
  covariates = NULL,
  covariates_table = NULL,
  covariates_implementation = list(),
  covariate_model = NULL,
  A_init = NULL,
  only_obs = FALSE,
  obs_step_size = NULL,
  int_step_size = 0.01,
  t_max = NULL,
  t_obs = NULL,
  t_tte = NULL,
  t_init = 0,
  obs_type = NULL,
  duplicate_t_obs = FALSE,
  extra_t_obs = TRUE,
  rtte = FALSE,
  checks = TRUE,
  verbose = FALSE,
  return_event_table = FALSE,
  return_design = FALSE,
  output_include = list(parameters = FALSE, covariates = FALSE),
  ...
)

Arguments

ode

function describing the ODE system

analytical

string specifying analytical equation model to use (similar to ADVAN1-5 in NONMEM). If specified, will not use ODEs.

parameters

model parameters

parameters_table

dataframe of parameters (with parameters as columns) containing parameter estimates for individuals to simulate. Formats accepted: data.frame, data.table, or list of lists.

mixture_group

mixture group for models containing mixtures. Should be either 1 or 2, since only two groups are currently allowed.

omega

vector describing the lower-diagonal of the between-subject variability matrix

omega_type

exponential or normal, specified as vector

res_var

residual variability. Expected a list with arguments prop, add, and/or exp. NULL by default.

iov_bins

allow override of the default IOV bins for a model. Specified as a vector of timepoints specifying the bin separators, e.g. iov_bins = c(0, 24, 48, 72, 9999). A warning will be thrown when less bins are requested than was defined for the model during compilation. When the number of bins is higher than defined for the model an error will be thrown.

seed

set seed for reproducible results

sequence

if not NULL specifies the pseudo-random sequence to use, e.g. "halton" or "sobol". See mvrnorm2 for more details.

n_ind

number of individuals to simulate

event_table

use a previously created design object used for ODE simulation instead of calling create_event_table() to create a new one. Especially useful for repeated calling of sim(), such as in optimizations or optimal design analysis. Also see sim_core() for even faster simulations using precalculated design objects.

regimen

a regimen object created using the regimen() function

lagtime

either a value (numeric) or a parameter (character) or NULL.

covariates

list of covariates (for single individual) created using new_covariate() function

covariates_table

data.frame (or unnamed list of named lists per individual) with covariate values

covariates_implementation

used only for covariates_table, a named list of covariate implementation methods per covariate, e.g. list(WT = "interpolate", BIN = "locf")

covariate_model

R code used to pre-calculate effective parameters for use in ADVAN-style analytical equations. Not used in ODE simulations.

A_init

vector with the initial state of the ODE system

only_obs

only return the observations

obs_step_size

the step size between the observations

int_step_size

the step size for the numerical integrator

t_max

maximum simulation time, if not specified will pick the end of the regimen as maximum

t_obs

vector of observation times, only output these values (only used when t_obs==NULL)

t_tte

vector of observation times for time-to-event simulation

t_init

initialization time before first dose, default 0.

obs_type

vector of observation types. Only valid in combination with equal length vector t_obs.

duplicate_t_obs

allow duplicate t_obs in output? E.g. for optimal design calculations when t_obs = c(0,1,2,2,3). Default is FALSE.

extra_t_obs

include extra t_obs in output for bolus doses? This is only activated when t_obs is not specified manually. E.g. for a bolus dose at t=24, if FALSE, PKPDsim will output only the trough, so for bolus doses you might want to switch this setting to TRUE. When set to "auto" (default), it will be TRUE by default, but will switch to FALSE whenever t_obs is specified manually.

rtte

should repeated events be allowed (FALSE by default)

checks

perform input checks? Default is TRUE. For calculations where sim_ode is invoked many times (e.g. population estimation, optimal design) it makes sense to switch this to FALSE (after confirming the input is correct) to improve speed.

verbose

show more output

return_event_table

return the event table for the simulation only, does not run the actual simulation. Useful for iterative use of sim().

return_design

returns the design (event table and several other details) for the simulation, does not run the actual simulation. Useful for iterative functions like estimation in combination with sim_core(), e.g. for estimation and optimal design.

output_include

list specifying what to include in output table, with keys parameters and covariates. Both are FALSE by default.

...

extra parameters

Value

a data frame of compartments with associated concentrations at requested times

Simulated regimen

See Also

sim_ode_shiny

Examples

p <- list(
  CL = 38.48,
  V  = 7.4,
  Q  = 7.844,
  V2 = 5.19,
  Q2  = 9.324,
  V3 = 111
)

omega <- c(0.3,       # IIV CL
           0.1, 0.3)  # IIV V

r1 <- new_regimen(
  amt = 100,
  times = c(0, 24, 36),
  type = "infusion"
)

mod <- new_ode_model("pk_3cmt_iv")
dat <- sim(
  ode = mod,
  parameters = p,
  omega = omega,
  n_ind = 20,
  regimen = r1
)

Only core function of the simulation function, always just returns observations. Mostly useful for estimations / optimal design. Has no checks (for speed)!

Description

Only core function of the simulation function, always just returns observations. Mostly useful for estimations / optimal design. Has no checks (for speed)!

Usage

sim_core(sim_object = NULL, ode, duplicate_t_obs = FALSE, t_init = 0)

Arguments

sim_object

list with design and simulation parameters

ode

ode

duplicate_t_obs

allow duplicate t_obs in output? E.g. for optimal design calculations when t_obs = c(0,1,2,2,3). Default is FALSE.

t_init

time of initialization of the ODE system. Usually 0.

Value

Data frame with simulation results


Deprecated function, renamed to sim()

Description

Deprecated function, renamed to sim()

Usage

sim_ode(...)

Arguments

...

parameters passed to sim() function

Value

Output from sim()

See Also

sim


Simulate ODE and create a Shiny app

Description

This function has been deprecated and moved to a separate package at https://github.com/ronkeizer/PKPDsimshiny.

Usage

sim_ode_shiny(...)

Arguments

...

arguments passed to PKPDsimShiny::sim_ode_shiny()

Value

No return value

See Also

sim_ode


Convert a table to a list

Description

Convert a table to a list

Usage

table_to_list(table)

Arguments

table

data.frame

Value

List containing original table contents


Test a model

Description

Test a model

Usage

test_model(url, test_file, package, force = FALSE)

Arguments

url

URL or file path to JSON representation of model

test_file

Path to a .R file containing tests to run

package

Package name

force

Run tests even if model is not flagged for building? Defaults to FALSE

Value

Runs test file for a model but does not return a value


Test if model still in memory

Description

Test if model still in memory

Usage

test_pointer(model)

Arguments

model

pointer to model

Value

No return value


Translate a model from/to various PKPD simulators

Description

Currently only supports PKDPsim <–> RxODE

Usage

translate_ode(code, auto = TRUE, from = NULL, to = NULL, verbose = TRUE)

Arguments

code

character string with ODE code

auto

is auto-detect syntax (from)

from

from syntax

to

to syntax

verbose

verbose, TRUE or FALSE

Value

Translated PKPDsim or RxODE model


Convert triangle omega matrix to full omega matrix

Description

Convert triangle omega matrix to full omega matrix

Usage

triangle_to_full(vect)

Arguments

vect

vector specifying triangle omega matrix

Value

Omega matrix